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Abstract In this paper, a class of bi-level variational inequalities for describing some
practical equilibrium problems, which especially arise from engineering, management and
economics, is presented, and a neural network approach for solving the bi-level variational
inequalities is proposed. The energy function and neural dynamics of the proposed neural
network are defined in this paper, and then the existence of the solution and the asymptotic
stability of the neural network are shown. The simulation algorithm is presented and the
performance of the proposed neural network approach is demonstrated by some numerical
examples.
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1 Introduction

In engineering, management, and economics, there are many practical problems can be
formulated as the following variational inequalities [3,8]: Find x such that

x ∈ �1, (x ′ − x)T f (x) ≥ 0, ∀ x ′ ∈ �1, (1.1)

where�1 is a closed convex set in Rn and f (x) is a mapping from Rn into itself. In many cases,
the solution x of variational inequalities (1.1) can solve the associated practical problems.
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However, in some practical problems, it is often required that the solution x of (1.1) must also
satisfy some additional constraints, say x ∈ �2, where �2 ⊂ �1 is a closed convex set of
Rn . Unfortunately, the solution of (1.1) generally doesn’t satisfy the additional constraints.
For some of those practical problems, it is very lucky that the additional constraints can be
satisfied if we introduce a control variable y ∈ Rn and can solve the following variational
inequalities: Find (x, y) such that

x ∈ �2, (x ′ − x)T y ≥ 0, ∀ x ′ ∈ �2, (1.2)

where x is a solution of the following variational inequalities:

x ∈ �1, (x ′ − x)T [ f (x) − y] ≥ 0, ∀ x ′ ∈ �1. (1.3)

Using the terminology in bi-level programming, (1.2) and (1.3) are called the upper-level VI
and the lower-level VI, respectively. For convenience, we call (1.2–1.3) a class of bi-level
variational inequalities (denoted by BVI(�1, �2, f )). Now, our question is how to solve
the bi-level variational inequalities and thus obtain the value of the control variable y and the
corresponding value of variable x .

Throughout of this paper, we assume that f is monotone and Lipschitz continuous on
�1, i.e.,

(x − x̃)T ( f (x) − f (x̃)) ≥ 0, ∀ x, x̃ ∈ �1,

and there is a constant L > 0 such that

‖ f (x) − f (x̃)‖ ≤ L‖x − x̃‖, ∀ x, x̃ ∈ �1.

Moreover, we assume that the solution set of BVI(�1, �2, f ), denoted by �∗, is nonempty.
For every solution point of BVI(�1, �2, f ), (x∗, y∗) ∈ �∗, we have

x(y∗) ∈ �1, (x − x(y∗))T [ f (x(y∗)) − y∗] ≥ 0, ∀ x ∈ �1. (1.4)

and

x(y∗) ∈ �2, (x − x(y∗))T y∗ ≥ 0, ∀ x ∈ �2. (1.5)

Let � = �1 ×�2 ⊂ Rl , �3 = (�1
⋂

�2)× Rn , thus, BVI(�1, �2, f ) can be also viewed
as a general variational inequality GVI(�, �3, F, Q) [6], Find u∗ = (x∗T , y∗T )T ∈ �3

such that

F(u∗) ∈ � and (F − F(u∗))T Q(u∗) ≥ 0, ∀F ∈ �, (1.6)

where

F(u) =
(

x
x

)

, Q(u) =
(

f (x) − y
y

)

. (1.7)

A general variational inequality GVI(�, �3, F, Q) is monotone if

(F(u) − F(ũ))T (Q(u) − Q(ũ)) ≥ 0, ∀ u, ũ ∈ �3.

Note that for our investigated problem,

(F(u) − F(ũ))T (Q(u) − Q(ũ)) = (x − x̃)T ( f (x) − f (x̃))

≥ 0, ∀ u, ũ ∈ �3,

and thus GVI(�,�3, F, Q) (1.6–1.7) is monotone whenever the mapping f is. The exis-
tence of the solution of problem GVI(�,�3, F, Q) is investigated by Pang and Yao [12].
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For solving monotone GVI(�,�3, F, Q), there are some methods in the literature [5,6,11].
Since our original interest is to solve problem (1.2–1.3) and the neural networks method is
very efficient for solving some variational inequalities [1,2,7], thus, in this paper we present
a simple neural network model for this GVI(�,�3, F, Q) with special structure (1.7).

In the next Section, a neural network model for solving the bi-level variational inequalities
(1.2–1.3), and some preliminaries are presented. The stability analysis, simulation algorithm
and convergence properties of the neural network model are studied in Sect. 3 and 4. Appli-
cations and illustrative examples are given in Sect. 5 and 6, respectively.

2 Neural network model

Let P� : Rl → � be a projection operator defined by

P�(v) = argmin{‖v − u‖ | u ∈ �}.
Then the basic properties of the projection on a closed convex set are [8]

(v − P�(v))T (u − P�(v)) ≤ 0, ∀v ∈ Rl ,∀u ∈ �, (2.1)

‖P�(u) − P�(v)‖ ≤ ‖u − v‖, ∀ u, v ∈ Rl . (2.2)

Using the projection notation, the general variational inequality (1.6) is equivalent to the
following projection equation (e.g., see [6] for a proof)

F(u) = P�[F(u) − Q(u)]. (2.3)

Let �∗ denote the solution set of BVI(�1, �2, f ) and

e(u, r) :=
(

ex (u, r)

ey(u, r)

)

=
(

x − P�1 [x − (1/r)
(

f (x) − y
)]

(1/r){x − P�2 [x − ry]}
)

(2.4)

denote the scaled residue of (2.3). It follows that for any r > 0,

u ∈ �∗ ⇐⇒ e(u, r) = 0.

For given u and r , throughout of this paper, we use the notations

ũ = u − e(u, r) (2.5)

and

ξ =
(

( f (x) − f (x̃)) − (y − ỹ)

x − x̃

)

. (2.6)

In order to obtain a convergent neural network method, we assume that r is chosen such that
u, ũ and ξ (see (2.5–2.6)) satisfy

‖ξ‖ ≤ rν‖u − ũ‖ with ν ∈ (0, 1). (2.7)

Under the assumption that f is Lipschitz continuous with Lipschitz constant L , we have

‖ξ‖ ≤ ‖ f (x) − f (x̃)‖ + ‖u − ũ‖ ≤ (L + 1)‖u − ũ‖,
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and condition (2.7) is satisfied when r ≥ (L + 1)/ν. In practical computation, we can get
such r by the following test procedure: For give u and a trial parameter r , we obtain ũ and ξ

by (2.5–2.6), then calculate the ratio

t := ‖ξ‖/‖r(u − ũ)‖.
If t ≤ ν, r is accepted. Otherwise, enlarge r by a factor µ > 1 and repeat the procedure.

Now, for any u∗ ∈ �∗, let E(u) = ‖u − u∗‖2 be the energy function. It is easy to know
that E(u) is a differentiable convex function and E(u) = 0 if and only if u is a solution of
(1.2–1.3). Thus, our objective is to find the solution to

min
u∈�3

E(u). (2.8)

To solve the problem (1.2–1.3), let us define the dynamics of the proposed neural network to
be

du(t)

dt
= −d(u), u ∈ �3, (2.9)

where d(u) = e(u, r) − ξ/r .
The stability analysis of the neural network will be established in next section.

3 Stability analysis

In order to establish the convergence of the neural network (2.9), we first prove the following
lemmas and theorems.

Lemma 3.1 Suppose that the mapping f is Lipschitz continuous with Lipschitz constant L
on Rn, i.e.,

‖ f (x1) − f (x2)‖ ≤ L‖x1 − x2‖, ∀ x1, x2 ∈ Rn,

then d(u) is Lipschitz continuous on �3.

Proof Let

v1 =
(

x1

y1

)

, v2 =
(

x2

y2

)

∈ �3,

and for i = 1, 2, let

e(vi , r) =
(

xi − P�1 [xi − (1/r)
(

f (xi ) − yi
)]

(1/r){xi − P�2 [xi − ryi ]}

)

,

ṽi =
(

x̃ i

ỹi

)

= vi − e(vi , r)

and

ξ i =
(

( f (xi ) − f (x̃ i )) − (yi − ỹi )

xi − x̃ i

)

.
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Using (2.2), we have

‖P�2 [x1 − ry1] − P�2 [x2 − ry2]‖ ≤ ‖x1 − x2‖ + r‖y1 − y2‖
≤ (1 + r)‖v1 − v2‖ (3.1)

and

‖P�1 [x1 − (1/r)
(

f (x1) − y1)] − P�1 [x2 − (1/r)
(

f (x2) − y2)]‖
≤ (1 + L

r
)‖x1 − x2‖ + 1

r
‖y1 − y2‖

≤ (1 + 1 + L

r
)‖v1 − v2‖. (3.2)

Combining (3.1) and (3.2), we obtain

‖e(v1, r) − e(v2, r)‖
≤ ‖x1 − x2 − (P�1 [x1 − (1/r)

(
f (x1) − y1)] − P�1 [x2 − (1/r)

(
f (x2) − y2)])‖

+ 1

r
‖x1 − x2 − (P�2 [x1 − ry1] − P�2 [x2 − ry2])‖

≤ (2 + 1 + L

r
)‖v1 − v2‖ + (1 + 2

r
)‖v1 − v2‖

= (3 + 3 + L

r
)‖v1 − v2‖

= L1‖v1 − v2‖, (3.3)

where L1 = (3 + 3+L
r ).

Following from (3.3), we have

‖ṽ1 − ṽ2‖ ≤ (1 + L1)‖v1 − v2‖, (3.4)

and hence

‖x̃1 − x̃2‖ ≤ (1 + L1)‖v1 − v2‖, (3.5)

‖ỹ1 − ỹ2‖ ≤ (1 + L1)‖v1 − v2‖. (3.6)

By a simple computation, we obtain

‖ξ1 − ξ2‖ ≤ ‖(( f (x1) − f (x̃1)) − (y1 − ỹ1)) − (( f (x2) − f (x̃2)) − (y2 − ỹ2))‖
+‖(x1 − x̃1) − (x2 − x̃2)‖

≤ L(‖x1 − x2‖ + ‖x̃1 − x̃2‖) + ‖y1 − y2‖ + ‖ỹ1 − ỹ2‖
+‖x1 − x2‖ + ‖x̃1 − x̃2‖

≤ (L + 1)(‖x1 − x2‖ + ‖x̃1 − x̃2‖) + ‖y1 − y2‖ + ‖ỹ1 − ỹ2‖
≤ (2 + L)‖v1 − v2‖ + (2 + L)(1 + L1)‖v1 − v2‖
= L2‖v1 − v2‖, (3.7)

where L2 = (2 + L)(2 + L1). Following from (3.3) and (3.7), we have

‖d(v1) − d(v2)‖ ≤ (L1 + L2

r
)‖v1 − v2‖, (3.8)

and the proof is completed. �
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Lemma 3.2 Let u∗ ∈ �∗ be a solution of (1.2–1.3), u, ξ, and r satisfy the inequality (2.7),
then

d E(u)

dt
= 2(u − u∗)T du

dt

= −2(u − u∗)T d(u)

≤ −(1 − ν)‖e(u, r)‖2. (3.9)

Proof It follows from (2.4) and (2.5) that

x̃ = P�1 [x − (1/r)( f (x) − y)] (3.10)

and

ỹ = (1/r){P�2 [x − ry] − (x − ry)}. (3.11)

Since x̃ ∈ �1, according to (1.4), we have

(x̃ − x∗)T ( f (x∗) − y∗) ≥ 0. (3.12)

Because x∗ ∈ �1 and x̃ is the projection of x − (1/r)( f (x) − y) onto �1, it follows from
(2.1) that

(x̃ − x∗)T r{x − (1/r)( f (x) − y) − x̃} ≥ 0. (3.13)

Adding (3.12) and (3.13), we get

(x̃ − x∗)T {r(x − x̃) − ( f (x) − f (x∗)) + (y − y∗)} ≥ 0. (3.14)

On the other hand, since P�2 [x − ry] ∈ �2, according to (1.5), we have

{P�2 [x − ry] − x∗}T ry∗ ≥ 0. (3.15)

Because x∗ ∈ �2, it follows from (2.1) that

{P�2 [x − ry] − x∗}T {[x − ry] − P�2 [x − ry]} ≥ 0. (3.16)

Adding (3.15) and (3.16), and using (3.11), we get

{(x − x∗) − r(y − ỹ)}T {r(y∗ − ỹ)} ≥ 0

and thus

(ỹ − y∗)T {r(y − ỹ) − (x − x∗)} ≥ 0. (3.17)

Combining (3.14) and (3.17), we obtain

(
x̃ − x∗

ỹ − y∗

)T (
r(x − x̃) − ( f (x) − f (x∗)) + (y − y∗)

r(y − ỹ) − (x − x∗)

)

≥ 0. (3.18)

It follows from the monotonicity of f that

(
x̃ − x∗

ỹ − y∗

)T (
( f (x̃) − f (x∗)) − (ỹ − y∗)

x̃ − x∗

)

≥ 0. (3.19)
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Adding (3.18) and (3.19), we get

(
x̃ − x∗

ỹ − y∗

)T (
r(x − x̃) − ( f (x) − f (x̃)) + (y − ỹ)

r(y − ỹ) − (x − x̃)

)

≥ 0. (3.20)

Following from (3.20) and the notations of e(u, r) and ξ , we have

(u − u∗)T d(u) ≥ e(u, r)T d(u). (3.21)

Note that under Condition (2.7) we have

e(u, r)T d(u) ≥ (1 − ν)‖e(u, r)‖2. (3.22)

Assertion (3.9) follows from (3.21) and (3.22), immediately. �


Furthermore, Lemma 3.2 implies that E(u) is non-increasing with respective to t . Thus
the set U+ = {u(t)|t ≥ 0} ⊂ �3 is bounded. In addition, following from (2.6) and (2.7), we
have

e(u, r)T d(u) = ‖e(u, r)‖2 − e(u, r)T ξ/r

>
1

2
‖e(u, r)‖2 − e(u, r)T ξ/r + 1

2
‖ξ/r‖2

= 1

2
‖d(u)‖2. (3.23)

Lemma 3.3 u ∈ �3 is a solution of bi-level variational inequalities (1.2–1.3) if and only if
u is an equilibrium point of the dynamic system (2.9).

Proof It follows from (2.4) that u ∈ �3 is a solution of bi-level variational inequalities
(1.2–1.3) if and only if e(u, r) = 0 for any r > 0. Using (2.7) and (2.5), we have

‖d(u)‖ ≥ ‖e(u, r)‖ − ‖ξ‖/r ≥ ‖e(u, r)‖ − ν‖u − ũ‖ = (1 − ν)‖e(u, r)‖ (3.24)

and

‖d(u)‖ ≤ ‖e(u, r)‖ + ‖ξ‖/r ≤ ‖e(u, r)‖ + ν‖u − ũ‖ = (1 + ν)‖e(u, r)‖ (3.25)

Combining (3.24) and (3.25), we obtain

e(u, r) = 0 ⇔ d(u) = 0.

The proof is completed. �


By Lemma 3.1 and [4], we have

Theorem 3.1 For any u0 ∈ �3, the initial value problem of the system of differential equa-
tions (2.9) has unique solution.

As a result of Lemma 3.2 and 3.3, we have the following theorem.

Theorem 3.2 Suppose that the mapping f is monotone on Rn, and u∗ ∈ �∗ is a solution of
(1.2–1.3). Then u∗ is asymptotically stable in the sense of Liapunov.
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Proof According to Lemma 3.3, we know that u∗ is an equilibrium point of (2.9). Since for
any u(t) �∈ �∗, e(u(t), r) �= 0. Thus, for u(t) �∈ �∗, by Lemma 3.2, we have

d E(u)

dt
≤ −(1 − ν)‖e(u(t), r)‖2 < 0.

This means that d E(u)
dt is negative definite. Therefore, u∗ is asymptotically stable in the large

[4]. The proof is completed. �


4 Simulation algorithm

Since the neural network (2.9) is actually the initial value problem of a differential equation,
the simplest simulation algorithm is the Euler method. Thus, we now use the Euler method
to solve the neural network (2.9), and have the following algorithm:
Algorithm 1:
Step 1: Initialization:

Let t0 = 0. Choose arbitrarily an initial point u(t0) = u0 ∈ �3.
Set k = 0, µ > 1, r > 0, γ ∈ (0, 2), ν ∈ (0, 1) and ε > 0 be a pre-specified tolerance.

Step 2: Computation:
Compute e(uk, r), ξ k by using (2.4) and (2.6), respectively.
If ‖e(uk, r)‖ < ε,

then stop and output uk ,
otherwise

Do while ρ = ‖ξ k‖/‖re(uk, r)‖ > ν

r := r × µ.
End Do

End If
d(uk) = e(uk, r) − ξ k/r ,
α∗

k = e(uk, r)T d(uk)/‖d(uk)‖2,
αk = γ × α∗

k .
Step 3: States Updating:

tk+1 = tk + αk ,
u(tk+1) = uk+1 = uk − αkd(uk).
Go to Step 2. �


For Algorithm 1, we have the following convergence results.

Theorem 4.1 Let u∗ ∈ �∗, sequence {uk} be generated by Algorithm 1, then

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − γ (2 − γ )α∗
k e(uk, r)T d(uk), ∀u∗ ∈ �∗. (4.1)

Proof By using (3.21), we obtain

‖uk+1 − u∗‖2 = ‖uk − u∗ − αkd(uk)‖2

≤ ‖uk − u∗‖2 − 2αke(uk, r)T d(uk) + α2
k ‖d(uk)‖2.

Substituting αk = γα∗
k and α∗

k = e(uk, r)T d(uk)/‖d(uk)‖2 in the above inequality, we
obtain (4.1) immediately. �


By using (3.22) and (3.23), we have α∗
k > 1

2 and (4.1) can be written as

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − c‖e(uk, r)‖2, ∀u∗ ∈ �∗, (4.2)
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where c = γ (2−γ )(1−ν)
2 > 0 is a constant. The convergence of Algorithm 1 can be deduced

from (4.2) immediately.

5 Applications

There are many practical problems which can be described by bi-level variational inequalities,
especially in the area of network management and control. In this section, we mainly outline
the application of bi-level variational inequalities in traffic assignment or traffic equilibrium
problem.

We consider a transportation network G. Let W be the set of origin-destination (OD) pairs
with N elements. OD pairs are denoted by w,w = 1, 2, . . . , N . dw is the fixed demands
associated with OD pair w. Let Pw be the set of paths joining the OD pair w with |Pw|
elements, P the set of paths with n elements. We group together the travel demands into a
vector d in RN . The travel demand d induces a flow vector x ∈ Rn with defined on every
path p ∈ P by

dw =
∑

p∈Pw

x p.

A user traveling on path p incurs a travel cost Fp(x). We group together the travel cost Fp(x)

into a vector F(x) in Rn . A feasible load pattern F is in equilibrium if, once established, no
user has any incentive to change his travel arrangements. This state is characterized by the
following equilibrium conditions which must hold for every OD pair w ∈ W and every path
p ∈ Pw,

Fp(x)

{= λw, i f x p > 0
≥ λw, i f x p = 0

(5.1)

where λw is the optimal travel cost associated with OD pair w [10]. Let λp be the optimal
travel cost associated with Fp(x) defined in (5.1). And group together λp into a vector λ in Rn .
Then, the above user equilibrium conditions are equivalent to the nonlinear complementarity
problem (NCP) [9]:

x ≥ 0, F(x) − λ ≥ 0, xT (F(x) − λ) = 0. (5.2)

It is well known that nonlinear complementarity problem (5.2) is equivalent to the variational
inequality: Find x ∈ Rn+ such that

(x ′ − x)T f (x) ≥ 0, ∀x ′ ∈ Rn+, (5.3)

where f (x) = F(x) − λ, Rn+ is the nonnegative orthant of Rn .
In order to control traffic assignment or rationally use the road services, the administration

should find out a charge policy yp ≥ 0 on path p ∈ P , such that the relevant path flows
x p(y) can be limited in a satisfied range, say x p(y) ≤ bp . This is a road pricing problem
which can be described as a nonlinear complementarity problem:

0 ≤ y ⊥ b − x(y) ≥ 0, (5.4)

where y ∈ Rn and b ∈ Rn are vector with components yp and bp , respectively. Similar to
(5.1), x p(y) must satisfy the following equilibrium conditions:

Fp(x)

{= λp + yp, i f x p > 0
≥ λp + yp, i f x p = 0

. (5.5)
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We know that problem (5.4) and equilibrium conditions (5.5) are equivalent to the following
variational inequalities: Find (x, y) such that

x ∈ �2, (x ′ − x)T y ≥ 0, ∀x ′ ∈ �2, (5.6)

where �2 = {x |x ≤ b, x ∈ Rn} and x is a solution of the following variational inequalities

x ∈ �1, (x ′ − x)T ( f (x) − y) ≥ 0, ∀x ′ ∈ �1, (5.7)

where �1 = Rn+, f (x) = F(x) − λ as in (5.3).
Now, we see that the problem of controlling traffic assignment or rationally using the road

services can be expressed as the bi-level variational inequalities (1.2–1.3).

6 Illustrative examples

In this section, some examples are provided to illustrate both the theoretical results achieved
in Sect. 3 and the simulation performance of Algorithm 1 for the dynamical system (2.9). In
the following illustrative examples, the computer program for implementing Algorithm 1 is
coded in MATLAB and the program runs on IBM notebook(R51).

Example 1 Consider the bi-level variational inequalities (1.2–1.3) with n = 10, �1 = Rn+,
�2 = {x |a ≤ x ≤ b, x ∈ Rn}, f (x) = Ax − q , where

a = [0.5, 0.2, 1.0, 0.3, 1.1, 0.8, 2.1, 0.7, 3.1, 1.0]T ∈ Rn,

b = [1.2, 1.3, 2.1, 1.3, 2.2, 3.1, 4.2, 1.4, 5.6, 2.1]T ∈ Rn,

q = [−3.0, 5.2,−6.4, 7.2,−7.0, 4.2, 8.6,−5.2, 2.4, 3.0]T ∈ Rn

and A = [ai j ] ∈ Rn×n , where ai j = 0.1
i+ j−1 , i.e.,

A = 0.1 ×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1
2

1
3 · · · 1

n
1
2

1
3

1
4 · · · 1

n+1
1
3

1
4

1
5 · · · 1

n+2
...

...
...

. . .
...

1
n

1
n+1

1
n+2 · · · 1

2n−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Rn×n .

It is well known that A is positive definite and thus f (x) is monotone with respect to x . Now,
we solve the problem (1.2–1.3) by the neural network method with x0 = b, y0 = 0 ∈ Rn ,
u0 = (xT

0 , yT
0 )T , µ = 1.2, r = 0.5, γ = 1.8 and ν = 0.8. The stopping test is

‖e(u, r)‖ ≤ 10−7.

The solution of this problem is that

x∗ = (0.5000, 1.3000, 1.0000, 1.3000, 1.1000, 3.1000, 4.2000, 0.7000, 5.6000,

2.1000)T

y∗ = (3.4065,−4.8827, 6.6674,−6.9669, 7.2075,−4.0126,−8.4289, 5.3575,

−2.2539,−2.8638)T

Figure 1 shows the trajectories of the neural network with the initial values above, where
solid lines and dashed lines are the trajectories of x and y, respectively. Furthermore, the
Matlab code for Example 1 is given in Table 1 .
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Fig. 1 Transient behavior of the neural network (2.9) in Example 1

Table 1 Matlab code for Example 1

% Matlab Program for Manuscript: Neural networks for a class
of bi-level

% variational inequalities. Written by Xu Ming Hua.

function bilevelvi1()
% Initialization
clc; n=10; zn=zeros(n,1); t=0; A=zeros(n,n);

for i=1:n
for j=1:n

A(i,j)=1/(i+j-1);
end

end

A=0.1*A; b=2*[-1.5,2.6,-3.2,3.6,-3.5,2.1,4.3,-2.6,1.2,1.5]’;
% Omega 1
ub=[1.2,1.3,2.1,1.3,2.2,3.1,4.2,1.4,5.6,2.1]’;
lb=[0.5,0.2,1.0,0.3,1.1,0.8,2.1,0.7,3.1,1.0]’;
x0=ub;y0=0*lb;u0=[x0;y0]; k=0; max_iter=500; mu=1.2; r=0.5;
gamma=1.8; nu=0.8; eps=10ˆ(-7); trajectory_u=[u0];
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% Begin computation
tic;
eu1=x0-max(zn,x0-(f(A,b,x0)-y0)/r);eu2=(x0-max(lb,min(ub,x0

-r*y0)))/r;
eu=[eu1;eu2]; ubar=u0-eu;xbar=ubar(1:n); ybar=ubar(n+1:2*n);
xi1=f(A,b,x0)-f(A,b,xbar)-y0+ybar; xi2=x0-xbar; xi=[xi1;xi2];
neu=norm(eu); nxi=norm(xi);

while neu > eps & k < max_iter
k=k+1; nuo=nxi/(r*neu);

while nuo > nu
r=r*mu; eu1=x0-max(zn,x0-(f(A,b,x0)-y0)/r);
eu2=(x0-max(lb,min(ub,x0-r*y0)))/r; eu=[eu1;eu2];
ubar=u0-eu; xbar=ubar(1:n);
ybar=ubar(n+1:2*n); xi1=f(A,b,x0)-f(A,b,xbar)

-y0+ybar;
xi2=x0-xbar; xi=[xi1;xi2]; neu=norm(eu);
nxi=norm(xi); nuo=nxi/(r*neu);

end

du=eu-xi/r; ndu=norm(du); alpha_star=eu’*du/nduˆ2;
alpha=gamma*alpha_star; t=t+alpha; u0=u0-alpha*du;
x0=u0(1:n); y0=u0(n+1:2*n);
trajectory_u=[trajectory_u,u0];
eu1=x0-max(zn,x0-(f(A,b,x0)-y0)/r);
eu2=(x0-max(lb,min(ub,x0-r*y0)))/r;
eu=[eu1;eu2]; ubar=u0-eu; xbar=ubar(1:n);
ybar=ubar(n+1:2*n);
xi1=f(A,b,x0)-f(A,b,xbar)-y0+ybar; xi2=x0-xbar;
xi=[xi1;xi2];
neu=norm(eu); nxi=norm(xi);

end

% Output the results.
elapsed_time =toc;
fprintf(’number of iterations = %6d\n’,k);

if k < max_iter
disp([’The method is convergent within the tolerant

number... of iterations.’]);
else

disp([’The method does not converge within’, ...
num2str(max_iter),’ iterations!’]);

end

fprintf(’norm of e(u,r)=%8.4e\n’,neu); fprintf
(’The solution (x;y)=\n’);
fprintf(’%8.4f\n’,u0); fprintf
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(’elapsed_time=%8.4f\n’,toc);
time_unit=elapsed_time/k;
axis_x=linspace(1,k+1,k+1)*time_unit;

for i=1:n
plot(axis_x,trajectory_u(i,:),’b’,’LineWidth’,1.4);
hold on;

end

for i=1:n
plot(axis_x,trajectory_u(n+i,:),’r--’,’LineWidth’,1.4);
hold on;

end

xlabel(’Time (Sec)’); print(’-depsc’, ’C:\fig1’); hold off;
return

% subfunction
function y=f(A,b,x)
y=A*x-b;
return

Example 2 Let n = 10, �1 = Rn+, �2 = {x |a ≤ x ≤ b, x ∈ Rn}, f (x) = 0.05(Ax − q),
where

a = [7.5, 7.2, 11.0, 6.3, 11.1, 20.8, 22.1, 5.7, 33.1, 11.0]T ∈ Rn,

b = [10.2, 12.3, 22.1, 13.3, 21.2, 33.1, 42.2, 11.4, 53.6, 28.1]T ∈ Rn,

q = [150,−260, 320,−360, 350, 210,−430,−260, 120,−150]T ∈ Rn

and A = [ai j ] ∈ Rn×n , where ai j = 2 min{i, j} − 1, i.e.,

A =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 1 · · · 1
1 3 3 · · · 3
1 3 5 · · · 5
...

...
...

. . .
...

1 3 5 · · · 2n − 1

⎤

⎥
⎥
⎥
⎥
⎦

∈ Rn×n .

It is well known that A is also positive definite and thus f (x) is monotone with respect to x .
Now, we solve problem (1.2–1.3) by the neural network method with x0 = b, y0 = 0 ∈ Rn ,
u0 = (xT

0 , yT
0 )T , and the other parameters are same as example 1. The solution of this

problem is that

x∗ = (10.2000, 7.2000, 11.0000, 6.3000, 11.1000, 20.8000, 22.1000, 5.7000,

33.1000, 11.0000)T

y∗ = (−0.5750, 32.7550, 15.8650, 60.8750, 35.7550, 52.0250, 91.2150,

87.6950, 73.1050, 87.7050)T

Figure 2 shows the trajectories of the neural network with the initial values above, where
solid lines and dashed lines are the trajectories of x and y, respectively.
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Fig. 2 Transient behavior of the neural network (2.9) in Example 2

Example 3 In this example, we consider the bi-level variational inequalities (1.2–1.3) with
nonlinear function

f (x) = [arctan(x1), arctan(x2), . . . , arctan(xn)]T + Ax + q,

and n = 10, �1 = Rn+, �2 = {x |a ≤ x ≤ b, x ∈ Rn}, where

a = [6.5, 5.2, 11.0, 8.3, 11.1, 20.8, 32.1, 10.7, 33.1, 18.0]T ∈ Rn,

b = [11.2, 12.3, 21.1, 13.3, 22.2, 31.1, 42.2, 18.4, 52.6, 27.1]T ∈ Rn,

and

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −1
0 0 0 · · · −1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Rn×n, q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − n/2
2 − n/2
3 − n/2

...

n/2 − 1
n/2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Rn .

Now, we solve the nonlinear bi-level variational inequalities (1.2–1.3) by the neural net-
work method with x0 = b, y0 = 0 ∈ Rn , u0 = (xT

0 , yT
0 )T , and the other parameters are
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Fig. 3 Transient behavior of the neural network (2.9) in Example 3

same as example 1. We obtain a solution of this problem as follow

x∗ = (6.5000, 9.9572, 11.8852, 13.3000, 17.7142, 23.6428, 32.1000, 18.4000,

33.1000, 18.0000)T

y∗ = (0.4609,−0.0000,−0.0000,−2.5037,−0.0000, 0.0000, 25.6968,

−23.8835, 35.3406, 9.4153)T

Figure 3 shows the trajectories of the neural network with the initial values above, where
solid lines and dashed lines are the trajectories of x and y, respectively.

Example 4 In this example, we also consider the bi-level variational inequalities (1.2–1.3)
with nonlinear function

f (x) =

⎡

⎢
⎢
⎢
⎣

3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6

2x2
1 + x1 + x2

2 + 3x3 + 2x4 − 2

3x2
1 + x1x2 + 2x2

2 + 2x3 + 3x4 − 1

x2
1 + 3x2

2 + 2x3 + 3x4 − 3

⎤

⎥
⎥
⎥
⎦

and n = 4, �1 = Rn+, �2 = {x |a ≤ x ≤ b, x ∈ Rn}, where

a = [−2.5,−5.0,−7.5,−10.0]T ∈ Rn,

b = [2.5, 5.0, 7.5, 10.0]T ∈ Rn .
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Fig. 4 Transient behavior of the neural network (2.9) in Example 4

Now, we solve the nonlinear bi-level variational inequalities (1.2–1.3) by the neural net-
work method with x0 = b, y0 = 0 ∈ Rn , u0 = (xT

0 , yT
0 )T , and the other parameters are also

same as example 1. We obtain a solution of this problem as follow

x∗ = (1.2247,−0.0000,−0.0000, 0.5000)T

y∗ = (−0.0000, 0.0000,−0.0000, 0.0000)T

Figure 4 shows the trajectories of the neural network with the initial values above, where
solid lines and dashed lines are also the trajectories of x and y, respectively.

Remark 6.1 Since bi-level variational inequalities (1.2–1.3) can be reformulated to a general
variational inequalities (GVI) of form (1.6–1.7), one can try to solve problem (1.2–1.3) via
some existing method for (1.6–1.7). For example, excellent paper [6] suggests an implicit
method by inexactly solving a series of systems of equations for problem (1.6–1.7) as follows.
Algorithm 2 Inexact implicit method for GVI

Given u0 ∈ R2n , γ ∈ (0, 2), a positive matrix G and a nonnegative sequence {ηk} satisfies∑∞
k=0 η2

k < ∞. For k = 0, 1, 2, . . . , if uk �∈ S∗, then finding uk+1 such that

‖
k(u
k+1)‖ ≤ ηk‖e(uk)‖, (6.1)

where S∗ is the solution set of the problem (1.6–1.7),

e(u) = F(u) − P�[F(u) − Q(u)], (6.2)
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k(u) = F(u) + Q(u) − F(uk) − Q(uk) + γρ(uk)G−1e(uk) (6.3)

and

ρ(u) = ‖e(u)‖2

e(u)T G−1e(u)
. (6.4)

Obviously, when f (x) is a nonlinear function, each iteration of the inexact implicit method
needs to solve approximately a system of nonlinear equations 
k(u) = 0. Although we
can use the Matlab function solve to give the solution(s) of nonlinear equations 
k(u) = 0,
it needs Algorithm 2 taking relatively more computing time than Algorithm 1 to solve the
problem (1.2–1.3). This is somewhat a disadvantage to Algorithm 2 when f (x) is a nonlinear
function. However, in Algorithm 1, we just need to use the value of the function f (x) and
compute the projection of a vector on � in the iterative processes. This property makes
Algorithm 1 easier to be implemented for the variational inequalities we consider.

Furthermore, numerical experiments show that Algorithm 1 and 2 are both efficient for
the preceding examples 1 and 2, and Algorithm 2 is less effective than Algorithm 1 for
example 3 and 4.

Remark 6.2 Since only the values of function f (x) are used in the iterative processes of
Algorithm 1, the method proposed in this paper can be called a direct method. This property
makes Algorithm 1 very practical for those variational inequalities arising from the real
world, in which the function f (x) usually does not have any explicit expression and only its
value can be observed or evaluated for a given variable.

Remark 6.3 It is possible to formulate the general variational inequalities (1.6–1.7) to a
problem of form (1.1): Find a vector(u∗, v∗) ∈ R2n × �, such that

[(
u
v

)

−
(

u∗
v∗

)]T [(
v∗ − F(u∗)

Q(u∗)

)]

≥ 0, ∀(u, v) ∈ R2n × �. (6.5)

One can try to solve problem (6.5) via some existing method. But this seems to be unwise
because of the large increase in dimensionality [6].

7 Conclusions

In this paper, a special bi-level variational inequalities arising from some practical equilibrium
problems is presented. A neural networks for solving this bi-level variational inequalities is
constructed. It has been shown theoretically and by numerical results that the trajectory of
the neural networks does converge to a solution of the bi-level variational inequalities and
the solution of the neural networks is asymptotic stability.
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